- (4) Arnow, L. E., J. Biol. Chem. 118, 531 (1937).
- (5) Balls, A. K., Jansen, E. F., Advances in Enzymol. 13, 321 (1952).
- (6) Barthel, W. F., Alexander, B. H., Giang, P. A., Hall, S. A., J. Am. Chem. Soc. 77, 2424 (1955).
 (7) Casida, J. E., Chapman, R. K.,
- Stahmann, M. A., Allen, T. C., J. Econ. Entomol. 47, 64 (1954).
- (8) Dostrovsky, I., Halmann, M., J. Chem. Soc. 1953, 516.
- (9) Epstein, J., Rosenblatt, D. N., Demek, M. M., J. Am. Chem. Soc. 78, 341 (1956).
 (10) Epstein, J., Rosenthal, R. W., Ess, R. J., Anal. Chem. 27, 1435
- (1955).
- (11) Hackley, B. E., Plapinger, R., Stolberg, M. A., Wagner-Jauregg T., J. Am. Chem. Soc. 77, 3651 (1955).
- (12) Hartley, B. S., Kilby, B. A., *Nature* **166**, 784 (1950).
- (13) Horning, E. C., Horning, M. C., J. Org. Chem. 11, 95 (1946).
 (14) Jandorf, B. J., Communications,
- 3rd International Congress of Biochemistry, Brussels, p. 136, 1955.
- (15) Jandorf, B. J., Crowell, E. A.,

Levin, A. P., Federation Proc. 14, 231 (1955).

- (16) Jandorf, B. J., Michel, H. O., Schaffer, N. K., Egan, R., (10) Schaffer, N. K., Egan, R., Summerson, W. H., Discussions Faraday Soc. 20, 134 (1956).
 (17) Jandorf, B. J., Summerson, W. H.,
- Fleisher, J. H., Johnson, D. V., Abstracts of Papers, 116th Meeting, American CHEMICAL Society, Atlantic City, N. J., p. 42C, 1946. (18) Jandorf, B. J., Wagner-Jauregg,
- M. A., J. M., Chem. Soc. 74, 1521 (1952).
- (19) Jansen, E. F., Nutting, M. D. F., Jang, R., Balls, A. K., J. Biol. Chem. 179, 189 (1949).
- (20) Kodama, S. K., Morse, M. S., Anderson, H. H., Dunlop, M. K., Hine, C. H., Arch. Ind. Hyg. and Occupational Med. 9, 45 (1954).
- (21) Kunitz, M., J. Gen. Physiol. 30, 291 (1947)
- (22) Lamb, A. B., Carleton, P. W., Maldrum, W. B., *J. Am. Chem.* Soc. 42, 251 (1920).
- (23) Levin, A. P., Jandorf, B. J., J. Pharmacol. and Exptl. Therap. 113, 206, Footnote 3 (1955).

- (24) Mazur. A., J. Biol. Chem. 164, 271 (1946)
- (25) Metcalf, R. L., March, R. B., Ann. Entomol. Soc. Amer. 46, 63 (1953).
- (26) Meyer, F., Hardebeck, K., Augustiny, U., Arzneimittel-Forsch. 5, 109 (1955).
- (27) Morse, M. S., Kodama, S. K., Hine, C. H., Proc. Soc. Exptl. Biol. Med. 83, 765 (1953).
- (28) Mounter, L. A., Floyd, C. S., Chanutin, A., J. Biol. Chem. 204, 221 (1953)
- (29) Nelson, N., *Íbid.*, **153**, 375 (1944).
- (30) Perkow, W., Ullerich, K., Meyer, F., Naturwissenschaften 39, 353 (1952).
- (31) Rothenberg, M. A., Nachmansohn, D., J. Biol. Chem. 168, 223 (1947).
- (32) Strelitz, F., Biochem. J. 38, 86 (1944)
- (33) Wilson, I. B., J. Biol. Chem. 190, 111 (1951).

Received for review December 9, 1955. Accepted April 21, 1956. Presented in part before Third International Congress of Biochemistry. Brussels, August 1 to 6, 1955, (14) and Meeting-in-Miniature, Maryland Section, ACS, November 18, 1955.

SYNERGISM IN PESTICIDES

Comparative Synergistic Effects of Synthetic 3,4-Methylenedioxyphenoxy Compounds in Pyrethrum and Allethrin Fly Sprays

W. A. GERSDORFF, P. G. PIQUETT, and MORTON BEROZA

Entomology Research Branch, **Agricultural Research Service**, U. S. Department of Agriculture, Beltsville, Md.

The comparative value of 63 synthetic 3,4-methylenedioxyphenoxy derivatives and two related compounds as synergists with either pyrethrins or allethrin was estimated in tests against the housefly, Musca domestica L., by the turntable method. Forty-three compounds were demonstrated to be synergistic with each insecticide. Certain ethers, acetals, and esters of aromatic sulfonic acids had strong effect, whereas esters of carboxylic and carbamic acids had little or no effect. The intensity of synergism was so high for 18 compounds—toxicity was raised to at least six times that expected for pyrethrins alone or three times that expected for allethrin alone—that further work was recommended.

HE BEST SYNERGISTS for pyrethrins and allethrin contain the 3,4methylenedioxyphenyl group in the molecule, although the presence of this group does not in itself assure synergistic effect (6, 8, 12). It has recently been shown that sesamolin, obtained from sesame oil and differing structurally from sesamin in containing a 3,4methylenedioxyphenoxy group in place of one of the 3,4-methylenedioxyphenyl groups (2, 3), is a much more effective synergist with pyrethrins against house-

flies, Musca domestica L., by the turntable method than is sesamin (7). It was, therefore, desirable to prepare other 3,4-methylenedioxyphenoxy derivatives and evaluate them as candidate synergists. The preparation of 66 such compounds has been reported (1). The present paper reports the results of tests with 63 of these compounds designed to evaluate them separately in mixtures with pyrethrins or allethrin against the housefly. The purpose of this study is to select the most promising

synergists for future, more precise comparison. Similar tests with two compounds that are not 3,4-methylenedioxyphenoxy derivatives are also reported for comparison with those of closely related compounds-1-allyl-3,4-methylenedioxybenzene (known as safrole) and 2-(*p*-methoxyphenoxy)tetrahydropyran.

Purified samples of the synthetic compounds were used. The sample of pyrethrins was the complex contained in the extractives from pyrethrum flowers not further processed for the removal of

materials other than the toxicants. It had been proved to be biologically stable when held in the dark at room temperature in a 4% kerosine solution and compared periodically with allethrin. In this sample, 61% of the total pyrethrins consisted of pyrethrin I and cinerin I as determined by the mercury-reduction method. The sample of allethrin was of 94% purity as determined by the hydrogenolysis method.

Sprays of the two insecticides, alone and mixed with each of the adjuncts, and spravs of the adjuncts alone were prepared at concentrations determined by preliminary tests. The sprays containing the insecticides alone were prepared at several concentrations in refined kerosine. One spray of each mixture was prepared. The concentration was usually 100 mg. of pyrethrins plus 1000 mg. of adjunct. or 50 mg. of allethrin plus 500 mg. of adjunct per 100 ml. of kerosine. There were some departures from these concentrations as the result of shortage or low solubility of the adjuncts. For the latter reason acetone was used as an auxiliary solvent in some sprays. One spray was prepared for each adjunct alone at its concentration in the mixture with pyrethrins and in the same solvent.

Method

Knockdown in 25 minutes and mortality in 1 day of laboratory-reared adult houseflies were determined in replicated tests by the Campbell turntable method (4). In each test approximately 100 flies averaging 2.5 to 3.5 days of age were used. A number of series of tests were made, each comprising the tests on the same populations of flies and including tests with standard sprays. All sprays in a series were tested simultaneously on each population. Because all the compounds were not available at one time, the number of sprays in a series varied.

Knockdown and Mortality Results

The sprays containing the adjuncts alone caused little or no knockdown and mortality. The standard sprays containing the insecticides alone and the mixed sprays caused complete knockdown. The mean mortality results obtained with them are given in Table I.

Evaluation of Joint Action

Table I also shows the insecticide equivalents necessary to assess the relative toxicity of the mixtures. To obtain these equivalents and to estimate their experimental error and so obtain the requirements to demonstrate synergism, the following procedure was used: In each series a weighted regression equation of probit mortality on log

concentration was computed for the standard insecticide by the method described by Finney (5). From this equation the logarithms of the insecticide equivalents were calculated for the individual mortalities obtained with all the sprays in the series. From an analysis of variance of these log concentrations the insecticide equivalent required for a significant difference from the actual insecticide content was calculated. This requirement, together with the regression equation and the relative standard error, is also reported in Table I. The equivalents reported are the means of the individual equivalents; the equivalents of the mean mortalities may be calculated directly with the use of the equations. As a precise comparison of estimations from mortalities approaching 100%should not be relied upon, the calculated equivalents for mortality levels above 95% are not given.

For mixtures containing acetone its toxicity has been allowed for in the calculation of the equivalents. This may be done with accuracy because of a study of similar tests on acetone-kerosine sprays containing pyrethrins or alleth-rin (unpublished), and the fact that ratios of toxicity by this method have been shown to be reproducible. The study shows that, between 0 and 75%, for an increment of 25% in acetone content, the ratio of toxicity is increased 55%. The effect of the smaller amounts may therefore be interpolated; the ratio of toxicity (insecticide equivalent of an acetone-kerosine mixture divided by the actual insecticide content) is 1.04 for a mixture containing 2.5% of acetone, 1.09 for 5%, 1.19 for 10%, 1.30 for 15%, and 1.42 for 20%. As may be seen, the values for the higher amounts approach significant differences in themselves. Therefore, to permit comparison of the mixtures containing acetone, the equivalents reported are adjusted to equivalents in kerosine alone by means of these ratios. The required equivalents to demonstrate synergism are also those in kerosine alone.

For mixtures containing precisely 100 mg. of pyrethrins or 50 mg. of allethrin per 100 ml., the insecticide equivalents, when those for the allethrin mixtures are multiplied by 2, are expressions of relative per cent toxicity. For the other mixtures the equivalents are to be adjusted according to the insecticide concentration used.

Because the adjuncts were nontoxic at the concentrations used, any significant increase in toxicity over that of the insecticide in each mixture may be ascribed to synergistic action. There were 22 compounds that either were not synergistic or caused such slight synergism (toxicity increased in their mixtures but 70% or less) that the increase was not significant in these tests. All but two, safrole and 2-(p-methoxyphenoxy)tetrahydropyran, are examples of compounds that lack pronounced synergistic effect despite the presence of the 3,4-methylenedioxyphenoxy group in the molecule; they are given below. Exceptions to the insecticide-synergist proportion of 1 to 10 are noted in parentheses. In the names appearing in this and subsequent groups R refers to 3,4-methylenedioxyphenyl and RO refers to 3,4methylenedioxyphenoxy.

The 22 following compounds were not synergistic.

	Pyreth- rins	Alleth- rìn
Acetic acid		
Chloro-, R ester		
(RO)-, butyl ester		
Benzoic acid		
R ester		
o-Chloro-, R ester		•
p-Chloro-, R ester		
o-Ethoxy-, R ester		
n-Butyric acid, R ester		
Caproic acid, R ester		
Carbamic acid		
1-Naphthyl-, R ester	(1:3)	(1:4)
Phenyl-, R ester	(1:3)	(1:3)
Carbonic acid		
<i>n</i> -Butyl R diester		
Ethyl R diester		
Isobutyl R diester		
Cyclohexanecarboxylic		
acid, R ester		
Ether, R trimethylsilyl		
2-Furoic acid, R ester		
Methane, bis(RO)-	(1:5)	
Palmitic acid, R ester		
Propionic acid, R ester		
Pyran, tetrahydro-, 2-(p-		
methoxyphenoxy)-		
Safrole		

In 43 compounds synergism was demonstrated and its approximate intensity with each insecticide—insecticide equivalent divided by actual content—is given below.

	Pyreth- rins	Alleth- rin	
Carbamic acid			
o-Tolyl-, R ester	2	2	
m-Tolyl-, R ester	2'	2	
p-Tolyl-, R ester	2	1	
Ether			
Allyl R	2	2	
<i>p</i> -Bromobenzyl R	2(1:9)	3(1:9)	
2-Chloroallyl R	2	2	
3-Chloroallyl R	2	2	
2,4-Dichlorobenzyl R	2	2	
3,4-Dichlorobenzyl R	2	2	
Acetaldehyde, 2-ethyl-			
hexyl R acetal	3	3	
Ether			
n-Amyl R	3	2	
n-Butyl R	3	3	
o-Chlorobenzyl R	3	2 2	
p-Chlorobenzyl R	3	2	
Isoamyl R	3	2	
<i>p</i> -Nitrobenzyl R	3(1:7)	2(1:7)	
Propyl R	3	2	

Table I. Joint Toxic Action against Houseflies of Certain 3,4-Methylenedioxyphenoxy

	With Pyrethrins		With Allethrin			
Adjunct ^a and Standard	– Concentration, mg./dl.	Arithmetic mean mortclity in 1 day, %	Geometric mean pyrethrins equivalent ^b , mg./dl.	Concentration, mg./dl.	Arithmetic mean mortality in 1 day, %	Geometric mean allethrin equivalent ^b , mg./dl.
		Series 1. Four	Replicates			
Pyran, tetrahydro-, 2-(RO) Standard	100 + 500 506 338 225 150	72.9 79.4 57.3 45.0 28.4	471 544 306 229 153	50 + 250 200 133 88.9 59.3	69.1 84.9 71.6 43.4 21.6	139 194 144 87.8 56.4
Required to demonstrate synergism Equation for standard Relative standard error of insecticide e		= 2.525 <i>X</i> - 1.090	131	· · · · · · · · · · · · · · · · · · ·	= 3.516X - 1.9	65.4 98
		Series 2. Two	Replicates			
Ether Benzyl R o-Chlorobenzyl R p-Chlorobenzyl R 2,4-Dichlorobenzyl R Ståndard	$100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 338 \\ $	63.4 49.1 46.1 33.8 51.2	458 321 300 219 338	50 + 500 50 + 500 50 + 500 50 + 500 133	74.2 69.5 61.9 71.8 82.6	112 103 90.3 107 133
Required to demonstrate synergism Equation for standard Relative standard error of insecticide e		20.4 = 2.433 <i>X</i> - 1.122	150 136 2	50.0 Y =	26.3 = 3.657 \dot{X} - 1.84	48.5 67.9
	qui i i i i i i i i i i i i i i i i i i	Series 3. Two I	Replicates			
Chrysanthemumic acid, R ester	100 + 1000	56.4	410	50 + 500	59.5	93.4
Ether p-Bromobenzyl R 2-Chloroallyl R 3-Chloroallyl R 3.4-Dichlorobenzyl R Standard	$\begin{array}{r} 100 + 920^{\circ} \\ 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 338 \\ 150 \end{array}$	37.7 24.8 36.7 31.6 48.5	236 172 250 217 337	$50 + 460^{a} 50 + 500 50 + 500 50 + 500 133 50.0$	81.9 55.6 57.1 67.8 77.9 25.0	141 88.0 89.3 109 135 49.8
Required to demonstrate synergism Equation for standard Relative standard error of insecticide	Y	19.6 = 2.323X - 0.91	148 151 0		3.388X - 1.43	75.5
	1	Series 4. Two I	Replicates			
Ether n-Amyl R Isoamyl R p-Nitrobenzyl R	$\begin{array}{r} 100 \ + \ 1000 \\ 100 \ + \ 1000 \\ 90 \ + \ 670^{ e} \end{array}$	49.8 44.5 56.2	326 281 275	50 + 500 50 + 500 $45 + 340^{7}$	67.9 71.5 69.4	84.5 90.7 69.3
Pyran, tetrahydro-, 2-(p-methoxy phenoxy)-° Standard	100 + 1000 338 150	23.6 50.9 24.0	146 337 148	50 + 500 133 50.0	33.1 88.3 35.5	47.8 135 49.9
Required to demonstrate synergism For mixtures containing usual amount of insecticide For mixtures containing 0.9 that			147			73.7
amount Equation for standard Relative standard error of insecticide e	$\frac{Y}{quivalent, 15.1\%}$	= 2.044 X - 0.14	133 4	133 $Y = 3.668X - 1.604$		66.3 4
Series 5.	Four Replicates			Series (5. Four Replic	ates
Acetic acid R ester Chloro-, R ester (RO)-, butyl ester Benzoic acid	100 + 1000 100 + 1000 ° 100 + 1000	22.1 32.4 18.0	150 175 129	50 + 500 $50 + 500^{\circ}$ $50 + 500^{\circ}$	40.3 49.8 37.1	66.6 70.9 63.4
R ester p-Chloro-, R ester o-Ethoxy-, R ester n-Butyric acid, R ester Caproic acid, R ester	$\begin{array}{c} 100 + 1000 \\ 100 + 1000^{\circ} \\ 100 + 1000^{\circ} \\ 100 + 1000 \\ 100 + 1000 \end{array}$	20.5 21.0 14.2 12.1 16.3	145 134 106 110 126	50 + 500 50 + 500° 50 + 500° 50 + 500 50 + 500	32.8 43.4 49.6 20.7 41.0	57.8 63.9 70.7 43.7 67.1
Carbonic acid n-Butyl R diester Ethyl R diester Isobutyl R diester Cyclohexanecarboxylic acid, R ester Ether	$\begin{array}{r} 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \end{array}$	17.2 11.2 15.3 18.9	128 102 123 138	50 + 500 50 + 500 50 + 500 50 + 500	31.4 30.8 40.4 36.7	55.4 56.8 66.0 61.6
2-(2-n-butoxyethoxy)ethyl R n-Butyl R 2-(2-Chloroethoxy)ethyl R Cyclohexyl R 2-Cyclohexylethyl R Cyclopentyl R 2-(2-Ethoxyethoxy)ethyl R	$\begin{array}{r} 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \end{array}$	99.1 49.4 93.4 91.5 93.0 82.2 99.3	>1000 271 926 1170 871 574 >1000	$50 + 500 50 + 500 \\ 50 + 500 $	99.5 82.2 91.8 88.0 74.0 84.2 98.3	>200 144 189 171 125 149 >200

60 AGRICULTURAL AND FOOD CHEMISTRY

860

٠

Derivatives and Two Related Compounds with Pyrethrins or Allethrin

Denvanves and two kelaled Co	With Pyrethrins		With Allethrin			
Adjunct ^a and Standard	Concentration, mg./dl.	Arithmetic mean mortality in 1 day, %	Geometric mean pyrethrins equiva- lent ^b , mg./dl.	Concentration, mg./dl.	Arithmetic mean mortclity in 1 day, %	Geometric mean allethrin equiva- lent ^b , mg./dl.
2-Ethylhexyl R R 2-n-octyl R Trimethylsilyl Propyl R 2-Furoic acid, R ester Palmitic acid, R ester Propionic acid, R ester Standard	$\begin{array}{r} 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 759 \\ 506 \\ 338 \\ 225 \end{array}$	74.0 63.4 18.8 51.5 21.1 6.4 17.3 89.4 79.3 61.5 40.3	479 361 137 284 120 80.8 129 752 540 347 226	50 + 500 50 + 500 50 + 500 50 + 500 50 + 500 50 + 500 200 133 88.9 59.3	80.7 71.6 44.9 62.1 41.9 32.5 32.8 89.7 82.4 66.3 37.9	134 115 71.3 94.1 61.6 57.7 56.8 171 150 108 61.1
Required to demonstrate synergism Equation for standard Relative standard error of insecticide equivalent, 15.8%	150 y -	20.9 = 2.962X - 2.22	146 144 4	39.5	7.2 3.783X - 2.140 13.3%	30.8 68.7
Series 7.	Four Replicates			Serics 8.	Four Replicate	28
Acetaldehyde 2-(2-n-butoxyethoxy)ethyl R acetal 2-n-butoxyethyl R acetal n-Butyl R acetal 2-Chloroethyl R acetal 2-(2-Ethoxyethoxy)-ethyl R acetal Ethyl R acetal 2-Ethylhexyl R acetal Isobutyl R acetal p-Dioxane, 2-(RO)-	$\begin{array}{r} 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \end{array}$	99.6 99.4 74.4 88.3 100 84.4 68.7 76.0 99.5	>1000 >1000 371 666 >1000 552 318 391 >1000	$50 + 500^{d} 50 + 500 50 + 500 50 + 500 50 + 500 50 + 500 50 + 500 50 + 500 50 + 500 50 + 500 c$	100 98.6 83.3 93.3 100 91.5 90.7 87.2 96.9	>170 >170 107 160 >170 191 141 115 >170
Ether Allyl R 2-n-Butoxyethyl R Furan, tetrahydro-, 2-ethoxy-5-(RO)- Safrole ⁹ Standard	$ \begin{array}{r} 100 + 1000 \\ 100 + 1000 \\ 100 + 1000 \\ 100 + 1000^{\circ} \\ 759 i \\ 506 \\ 338 \\ 225 \\ 150 \\ \end{array} $	49.1 99.0 99.5 35.6 95.8 84.7 66.1 56.4 44.0	185 > 1000 > 1000 119 1080 595 292 224 163	50 + 500 50 + 500 50 + 500 50 + 500d 200 133 88.9 59.3 39.5	84.7 96.0 98.3 67.8 95.3 93.8 81.9 51.6 34.6	$ \begin{array}{r} 109\\ 182\\ >170\\ 71.3\\ >170\\ 158\\ 98.1\\ 54.1\\ 40.1\\ \end{array} $
Required to demonstrate synergism Equation for standard Relative standard error of insecticide equivalent, 26.8%	λ	= 2.278.1 - 0.18	176 9	 Y =	3.379.X - 0.817 20.6%	79.3
Series 9.	Four Replicates			Series 10	. Four Replica	ates
Acetaldehyde, 2-methoxyethyl R acetal Benzenesulfonic acid, R ester <i>p</i> -chloro-, R ester Benzoic acid, <i>o</i> -chloro-, R ester	$\begin{array}{r} 100 + 1000 \\ 100 + 1000^{\prime} \\ 100 + 1000^{\prime} \\ 100 + 1000^{h} \end{array}$	99.5 99.8 95.5 33.8	> 900 > 900 823 138	$50 + 500 \\ 50 + 500^{h} \\ 50 + 500^{h} \\ 50 + 500^{c}$	98.6 99.1 92.6 49.0	>220 >220 181 65.8
Carbamic acid 1-Naphthyl-, R ester Phenyl-, R ester o-Tolyl-, R ester m-Tolyl-, R ester p-Tolyl-, R ester Methane, bis(RO)- 2-Naphthalenesulfonic acid, R ester p-Toluenesulfonic acid, R ester Standard	$\begin{array}{r} 100 + 300 ^{\circ} \\ 100 + 300 ^{\wedge} \\ 100 + 500 ^{\prime} \\ 100 + 1000 ^{\circ} \\ 100 + 1000 ^{\circ} \\ 100 + 500 ^{\circ} \\ 100 + 1000 ^{\prime} \\ 100 + 1000 ^{\prime} \\ 759 \\ 506 \\ 338 \\ 225 \end{array}$	33.9 30.1 60.7 51.7 58.3 45.4 74.9 91.6 93.1 80.1 67.4 48.4	114 125 228 204 197 145 316 575 898 481 342 227	50 + 200 * 50 + 150 * 50 + 250 * 50 + 500 * 47.5 + 475 * 50 + 500 * 50 + 500 * 200 * 133 88.9 59.3 39.5	37.8 45.1 78.3 71.8 44.8 67.4 79.0 93.9 91.8 82.9 63.8 37.1 17.0	$\begin{array}{c} 41.7\\ 56.2\\ 107\\ 99.1\\ 56.1\\ 70.4\\ 114\\ 185\\ 189\\ 151\\ 93.4\\ 58.4\\ 38.0\\ \end{array}$
Required to demonstrate synergism Equation for standard Relative standard error of insecticide equivalent, 16.8%	Y	= 2.772 <i>X</i> - 1.57	148 '1		3.443X - 1.41 26.1%	87.1
 R = 3,4-methylenedioxyphenyl; R0 Equivalents in acetone-kerosine spra 5% acetone. 20% acetone. 				/ 15% acetone. ⁹ Not an RO comp ^h 10% acetone. ⁱ 2 replicates.	bound.	

2-Naphthalenesulfonic		
acid, R ester	3	2
Acetaldehyde		
n-Butyl R acetal	4	2
Isobutyl R acetal	4	2
Chrysanthemumic acid,		
Rester	4	2
Ether		
2-n-Octyl R	4	2
	5	2
Benzyl R		
2-Ethylhexyl R	5	3
Pyran, tetrahydro-, 2-		
(RO)-	5(1:5)	3(1:5)
Acetaldehyde, ethyl R		
acetal	6	3.5 or
		greater
Ether, cyclopentyl R	6	3
<i>p</i> -Toluenesulfonic acid,	6	3.5 or
R ester		greater
Acetaldehyde, 2-chloro-	7	3
ethyl R acetal		
Benzenesulfonic acid, p-	8	3.5 or
chloro-, R ester		greater
		greater
Acetaldehyde		
2-(2- <i>n</i> -butoxyethoxy)-	9 or	3.5 or
ethyl R acetal	greater	greater
2-n-Butoxyethyl R	9 or	3.5 or
acetal	greater	greater
2-(2-Ethoxyethoxy)-	9 or	3.5 or
ethyl R acetal		
	greater	greater
2-Methoxyethyl R	9 or	3.5 or
acetal	greater	greater
Benzenesulfonic acid, R	9 or	3.5 or
ester	greater	greater
p-Dioxane, 2-(RO)-	9 or	3.5 or
1	greater	greater
Ether	Brouter	greater
	0	2
2-(2- <i>n</i> -Butoxyethoxy)-	9 or	3.5 or
ethyl R	greater	greater
2-n-Butoxyethyl R	9 or	3.5 or
	greater	greater
2-(2-Chloroethoxy)-	9 or	3.5 or
ethyl R	greater	greater
,	-	
Cyclohexyl R	9 or	3.5 or
	greater	greater
2-Cyclohexylethyl R	9 or	3
	greater	
2-(2-Ethoxyethoxy)-	9 or	3.5 or
ethyl R	greater	greater
	9 or	-
Furan, tetrahydro-, 2-		3.5 or
ethoxy-5-(RO)-	greater	greater

The last 18 compounds listed approach the effectiveness of the best commercial synergists—sulfoxide (11), sulfone (9), piperonyl butoxide (10), propyl isomer (10), and piperonyl cyclonene (6) as judged with the same method of application and against the housefly. Further work with the new compounds designed to make more precise comparison of such strong effects is therefore warranted.

Discussion

Safrole was included for comparison with allyl 3,4-methylenedioxyphenyl

ether. As the compounds differ structurally only in the ether linkage and the ether was established as synergistic whereas safrole was not, the comparison furnishes another example of the importance of this linkage. However, the possession of this linkage alone does not give assurance of synergistic effect. With a compound related to the highly synergistic tetrahydropyran derivative but not containing the 3,4-methylenedioxy group—2-(p-methoxyphenoxy)tetrahydropyran-synergism was not found with either insecticide. In this case the replacement of the methylenedioxy group with the *p*-methoxy group destroyed synergistic effect.

In so far as comparisons could be made, the more synergistic a compound was with pyrethrins the more synergistic it was in general with allethrin. However, the intensity of synergism had a pronounced trend to be greater with pyrethrins.

The only esters found to have an appreciable synergistic effect were those of certain aromatic sulfonic acids. With each insecticide the intensity was only moderate for the ester of 2-naphthalenesulfonic acid, but relatively high for the others.

With but one exception, synergism was demonstrated in mixtures containing the ethers. The exception was the trimethylsilyl compound, which is, in fact, not a true ether, containing the linkage C-O-Si instead of C-O-C. In general, the greater the number of carbon atoms in the substituting group the greater was the intensity, especially when the group was cyclic or contained an alkoxy group. Introduction of a bromine or chlorine atom into a chain did not increase the intensity; in fact, for the benzyl analog and its halogenated derivatives (and a nitro derivative as well) there was a decrease.

The acetals were highly synergistic, those containing an alkoxy group in the substituted chain resulting in the highest intensity with either insecticide.

The urethan derivatives—that is, the esters of carbamic acids—resulted in little or no synergism.

Conclusions

Forty-three compounds were demonstrated to be synergistic with either pyrethrins or allethrin. Certain ethers, acetals, and esters of aromatic sulfonic acids had strong effect, whereas esters of carboxylic and carbamic acids had slight or no effect. The intensity of synergism was so high for 18 compounds —the toxicity of the mixtures was at least six times that expected for pyrethrins alone or three times that expected for allethrin alone—that further work is recommended with them.

At the concentrations tested knock-

down of flies in 25 minutes was complete with all sprays containing the insecticides. Sprays containing the compounds alone caused no or negligible knockdown and mortality.

Literature Cited

- (1) Beroza, Morton, J. Agr. Food Chem. 4, 49 (1956).
- (2) Beroza, Morton, J. Am. Chem. Soc. 77, 3332-4 (1955).
- (3) Beroza, Morton, J. Am. Oil Chemists' Soc. 31, 302-5 (1954).
- (4) Campbell, F. L., Sullivan, W. N., Soap 14 (6), 119 (1938).
- (5) Finney, D. J., "Probit Analysis," University Press, Cambridge, 1952.
- (6) Gersdorff, W. A., Mitlin, Norman, *J. Econ. Entomol.* 45, 519-23 (1952).
- (7) Gersdorff, W. A., Mitlin, Norman, Beroza, Morton, *Ibid.*, 47, 839– 42 (1954).
- (8) Gersdorff, W. A., Mitlin, Norman, Gertler, S. I., U. S. Dept. Agr., Bur. Entomol. and Plant Quarantine E-848 (1952).
- (9) Gersdorff, W. A., Mitlin, Norman, Nelson, R. H., J. Econ. Entomol. 48, 9-11 (1955).
- (10) Gersdorff, W. A., Nelson, R. H., Mitlin, Norman, *Ibid.*, 44, 921-7 (1951).
- (11) Ibid., 45, 905-8 (1952).
- (12) Schroeder, H. O., Jones, H. A., Lindquist, A. W., *Ibid.*, 41, 890-4 (1948).

Received for review February 2, 1956. Accepted May 15, 1956. Third Annual Meeting, Entomological Society of America, Dallas, Tex., November 28 to December 2, 1955.

Microbiological and Chick Assay of Vitamin B₁₂ Activity in Feed Supplements and Other Natural Products—Correction

In the article on "Microbiological and Chick Assay of Vitamin B_{12} Activity in Feed Supplements and Other Natural Products" [J. AGR. FOOD CHEM. 4, 364 (1956)] the following corrections should be made in Table II. In Diet I 30 grams of soybean meal were used, and 2.3 grams of Mico mix instead of calcium carbonate. In Diet II 2.0 grams of calcium carbonate were used.

Footnote b of Table II should read, beginning with the second line: phosphate, 225; magnesium sulfate, 125; manganese sulfate monohydrate, 20; potassium iodide, 0.3; zinc acetate, 0.7; aluminum sulfate (alunogenite), 0.8; ferric citrate, 25; copper sulfate pentahydrate, 1.0; cobalt acetate, 0.2; and nickel chloride, 0.1 gram.

W. L. WILLIAMS